Negative Coefficient: Error Analysis & Misconceptions

Mathematics
Grade 6
11 questions
~22 mins
1 views0 downloads

About This Worksheet

A worksheet focusing on understanding and correctly expanding brackets with negative coefficients, targeting common misconceptions and error analysis for Grade 6 students.

Worksheet Preview

Full preview • 11 questions

Negative Coefficient: Error Analysis & Misconceptions

Subject: MathematicsGrade: Grade 6
Name:
Date:
TeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizz

Untitled Worksheet

Grade Grade 6
A

Practice Questions

Answer all questions. Show your working in the grid spaces provided.
1.
Expand the expression: 3(x - 4)
[2 marks]
2.
Expand: -2(3x + 5)
[2 marks]
3.
Simplify: -5(2x - 7) + 3(x + 4)
[3 marks]
4.
Identify the mistake: Expand -3(x - 2) as -3x + 2
[2 marks]
5.
Expand and simplify: -4(2x + 3) - x
[3 marks]
6.
Plot the graph of y = -2x on the grid.
[2 marks]
7.
Construct a rectangle where the length is 3x and the width is -2x. What should be the area?
[3 marks]
8.
Simplify: -7(3x - 4) + 2(5x + 1)
[3 marks]
9.
Explain why expanding -x(2x + 3) gives a negative result.
[3 marks]
10.
Correct the mistake in expanding: -(x + 5) as -x + 5
[2 marks]
11.
Challenge: Expand and simplify: -2(3x^2 - x + 4)
[4 marks]

Quick Actions

What is Remix?

Create a new worksheet based on this one. Change the grade level, topic, number of questions, or difficulty - then generate a fresh version.

  • • Change grade level (Grade 6 → Grade 7)
  • • Swap topics (Harry Potter → Macbeth)
  • • Add more questions (10 → 15)
  • • Adjust difficulty

Details

Created
1/1/2026
Updated
1/1/2026
Type
worksheet