Brackets & Powers: Mixed Review
Mathematics
GCSE Higher
11 questions
~22 mins
1 views0 downloads
About This Worksheet
A worksheet covering Brackets & Powers within the Order of Operations for GCSE Higher students. Focuses on procedural mastery, problem-solving, real-world applications, and challenging extension questions.
Worksheet Preview
Full preview • 11 questions
Brackets & Powers: Mixed Review
Subject: MathematicsGrade: GCSE Higher
Name:
Date:
TeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizz
Untitled Worksheet
Grade GCSE Higher
A
Practice Questions
Answer all questions. Show your working in the grid spaces provided.
1.
Calculate the value of 3 + 2 × (4^2 - 6).
[2 marks]2.
Simplify: (5^3 ÷ 125) + 2^4.
[3 marks]3.
Evaluate: 2 × [3 + (4^2 - 5)]^2.
[3 marks]4.
Construct an expression that simplifies to 64 using brackets and powers.
[2 marks]5.
Calculate: (7 + 3)^2 - 4^2.
[2 marks]6.
Simplify the expression: 4 × (2^3 + 5) - 3^2.
[3 marks]7.
Evaluate: (8 ÷ 2)^3 + 2^4.
[3 marks]8.
A rectangle’s length is (2^3 + 4). Its width is 3, and you need to find its area. Calculate the area.
[3 marks]9.
Simplify: [(6^2 ÷ 3) + 2^3] × 2.
[3 marks]10.
Identify and correct the mistake in evaluating: 3 + 4^2 ÷ 2.
[2 marks]11.
Calculate: (2 + 3)^3 - (4^2 + 2).
[2 marks]Quick Actions
What is Remix?
Create a new worksheet based on this one. Change the grade level, topic, number of questions, or difficulty - then generate a fresh version.
- • Change grade level (Grade 6 → Grade 7)
- • Swap topics (Harry Potter → Macbeth)
- • Add more questions (10 → 15)
- • Adjust difficulty
Details
- Created
- 1/1/2026
- Updated
- 1/1/2026
- Type
- worksheet