Critical Values: Fluency & Practice
Mathematics
Year 9
12 questions
~24 mins
1 views0 downloads
About This Worksheet
A worksheet focused on understanding and calculating Critical Values in quadratic inequalities, designed to develop procedural mastery and problem-solving skills.
Worksheet Preview
Full preview • 12 questions
Critical Values: Fluency & Practice
Subject: MathematicsGrade: Year 9
Name:
Date:
TeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizzTeachWhizz
Untitled Worksheet
Grade Year 9
A
Practice Questions
Answer all questions. Show your working in the grid spaces provided.
1.
Given the quadratic function y = x^2 - 4x + 3, find its critical values.
[3 marks]2.
Determine the critical values of the quadratic expression x^2 + 6x + 8.
[3 marks]3.
Calculate the critical points where the quadratic y = 2x^2 - 8x + 6 intersects its vertex.
[3 marks]4.
Plot the graph of y = x^2 - 4x + 3. Mark the critical values on the x-axis.
[4 marks]5.
Construct a quadratic graph with critical values at x = -2 and x = 4. Write the quadratic function equation.
[4 marks]6.
Solve the inequality y > 0 for y = x^2 - 5x + 6, based on its critical values.
[4 marks]7.
A ball is thrown such that its height h(t) = -t^2 + 4t + 2, where t is time. Find the critical times when the height reaches its maximum.
[4 marks]8.
Determine whether the quadratic y = 3x^2 - 12x + 5 is positive or negative between its critical values.
[3 marks]9.
Find the critical values of y = x^2 - 2x - 8 and determine the intervals where y is less than zero.
[3 marks]10.
An object’s height over time is modeled by h(t) = -2t^2 + 8t + 5. Find the critical times for maximum height, and state the maximum height.
[5 marks]11.
Identify and correct the mistake in this statement: 'Critical values are always the roots of the quadratic and the maximum or minimum points of the parabola.'
[3 marks]12.
Challenge: Given y = 2x^2 - 4x + 1, find the critical values and determine the nature (max/min) of the vertex.
[4 marks]Quick Actions
What is Remix?
Create a new worksheet based on this one. Change the grade level, topic, number of questions, or difficulty - then generate a fresh version.
- • Change grade level (Grade 6 → Grade 7)
- • Swap topics (Harry Potter → Macbeth)
- • Add more questions (10 → 15)
- • Adjust difficulty
Details
- Created
- 1/1/2026
- Updated
- 1/1/2026
- Type
- worksheet